

Annual Green Bond Use of Proceeds Report for the period ending December 31, 2024

3.062% \$500 Million, Series 4 Senior Debentures due 2027

and

2.194% \$500 Million, Series 6 Senior Debentures due 2028

and

6.074% \$400 Million, Series 7 Senior Debentures due 2029

February 26, 2025

INTRODUCTION

On April 20, 2020, Granite Real Estate Investment Trust¹ ("Granite REIT") completed its Green Bond Framework² (the "Framework") under which Granite REIT or any of its subsidiaries may issue green bonds to finance or re-finance Eligible Green Projects as defined by the Framework. On June 2, 2020, Granite REIT Holdings Limited Partnership, with an unconditional guarantee by Granite REIT and Granite REIT Inc. (collectively "Granite"), issued its inaugural green bond, 3.062% \$500 million Series 4 Senior Debentures due 2027 (the "2027 Debentures"). On August 30, 2021, Granite issued its second green bond, 2.194% \$500 million Series 6 Senior Debentures due 2028 (the "2028 Debentures"). On October 12, 2023, Granite issued its third green bond, 6.074% \$400 million Series 7 Senior Debentures due 2029 (the "2029 Debentures" and collectively with the 2027 Debentures and the 2028 Debentures, the "Green Bonds")

Granite obtained an independent second party opinion³ from Morningstar Sustainalytics, a globally-recognized provider of ESG research, ratings and data, on its Framework, indicating alignment with the International Capital Markets Association Green Bond Principles 2018. Morningstar Sustainalytics has also completed the annual review of this report.

Pursuant to the Framework, Granite commits to publishing an annual use of proceeds report until the net proceeds of each of the Green Bonds have been fully allocated.

ABOUNT GRANITE

Granite is a Canadian-based REIT engaged in the acquisition, development, ownership and management of logistics, warehouse and industrial properties in North America and Europe. As at February 26, 2025, Granite owns 143 investment properties in five countries representing approximately 63.3 million square feet of leasable area.

¹ On October 1, 2024, Granite Real Estate Investment Trust and Granite REIT Inc. (collectively "The Trust") announced that it completed the court-approved plan of arrangement under the *Business Corporations Act* (British Columbia) to replace The Trust's stapled unit structure with a conventional REIT trust unit structure. The Trust's Green Bond Framework was issued on April 20, 2020 when The Trust had a stapled unit structure in place. Any references in this document and the Green Bond Framework to "Granite REIT" shall now have the meaning of Granite Real Estate Investment Trust alone.

² Granite's Green Bond Framework complies with the Green Bond Principles developed by the International Capital Markets Association as of June 2018 and is available on Granite's website: <u>https://granitereit.com/wp-</u> content/uploads/2020/05/Granite-Green-Bond-Framework.pdf

³ Morningstar Sustainalytics' second party opinion was issued April 2020 and is available on Granite's website: <u>https://granitereit.com/wp-content/uploads/2020/05/Granite-REIT-Green-Bond-Framework-Second-Party.pdf</u>

USE OF PROCEEDS SUMMARY AND MANAGEMENT'S ASSERTION

The net proceeds from the 2027 Debentures total \$496.9 million representing gross proceeds of \$500 million less \$3.1 million of transaction costs.

The net proceeds from the 2028 Debentures total \$497.3 million representing gross proceeds of \$500 million less \$2.7 million of transaction costs.

The net proceeds from the 2029 Debentures total \$397.5 million representing gross proceeds of \$400 million less \$2.5 million of transaction costs.

Granite's executive management is responsible for the completeness, accuracy and validity of this Green Bond Use of Proceeds report. Granite management asserts that as at December 31, 2024, Granite has allocated a total of \$1,185.5 million of net Green Bond proceeds to Eligible Green Projects representing 100%, 100% and 48.1% of the net proceeds of the 2027 Debentures, 2028 Debentures and 2029 Debentures, respectively. 99.7% of total net Green Bond proceeds have been allocated to Green Buildings with the remaining 0.3% of the net Green Bond proceeds having been allocated to Resource Efficiency and Management projects.

\$1,185.5 MILLION ALLOCATED TO ELIGIBLE GREEN PROJECTS

The tables below summarize the allocated amounts from the net proceeds of the 2027 Debentures, 2028 Debentures and 2029 Debentures, per Eligible Green Project.

Use of Net Proceeds of the 2027 Debentures

Eligible Green Project Category per Framework	Certification Rating⁴ (Achieved or Pursuing)	Eligible Investment	Location	Date Completed	Allocated Net Proceeds (C\$ million)
Green Buildings	LEED Silver (Achieved)	Acquisition of a Green Building located at 3501 North Lancaster Hutchins Road.	Lancaster, Texas, USA	March 1, 2019	106.1
Green Buildings	BREEAM "Excellent" (Achieved)	Acquisition of a Green Building located at Oude Graaf 15.	Weert, Netherlands	May 1, 2020	31.9
Green Buildings	Two Green Globes (Achieved)	Completed development of a Green Building at 1201 Allpoints Court.	Plainfield, Indiana, USA	June 15, 2020	36.0
Green Buildings	BREEAM "Very Good" (Achieved)	Acquisition of a Green Building located at Francis Baconstraat 4.	Ede, Netherlands	July 1, 2020	21.4
Green Buildings	BREEAM "Excellent" (Achieved)	Acquisition and subsequent expansion of a Green Building located at De Kroonstraat 1 and De Poosthoornstraat 2 (expansion).	Tilburg, Netherlands	July 1, 2020 and December 18, 2020 (expansion)	83.8
Green Buildings	BREEAM "Very Good" (Achieved)	Acquisition and subsequent development of a Green Building located at Aquamarijnweg 2.	Bleiswijk, Netherlands	March 13, 2020 and September 1, 2020 (completion)	66.2
Green Buildings	LEED Silver (Achieved)	Acquisition of a Green Building located at 1243 Gregory Drive	Antioch, Illinois, USA	September 3, 2021	56.5
Green Buildings	DGNB Gold (Achieved)	Completed development of a Green Building at Im Ghai 36	Altbach, Germany	June 2022	41.2
Green Buildings	Two Green Globes (Achieved)	Completed development of a Green Building at 5000 Village Creek Road	Fort Worth, Texas, USA	June 2022	51.6 (Partial Allocation)

⁴ See "Certification Rating Organizations" section for additional information on green building certifications.

Use of Net Proceeds of the 2027 Debentures (continued)

Eligible Green Project Category per Framework	Certification Rating ³ (Achieved or Pursuing)	Eligible Investment	Location	Date Completed	Allocated Net Proceeds (C\$ million)
Resource Efficiency and Management	N/A	LED lighting retrofits at six properties	Various, Canada, USA	2018- 2022	1.8
Resource Efficiency and Management	N/A	HVAC replacements at two properties	Joliet, IL, USA and Novi, MI, USA	October 2020 and June 2022	0.4
Total Net Proceeds Allocated					\$496.9
Portion of Net Proceeds Allocated					100%

Use of Net Proceeds of the 2028 Debentures

Eligible Green Project Category per Framework	Certification Rating ⁵ (Achieved or Pursuing)	Eligible Investment	Location	Date Completed	Allocated Net Proceeds (C\$ million)
Green Buildings	Two Green Globes (Achieved)	Completed development of a Green Building at 5000 Village Creek Road	Fort Worth, Texas, USA	June 2022	3.5 (Partial Allocation)
Green Buildings	BREEAM "Excellent" (Achieved)	Acquisition of a Green Building located at Swaardvenstraat 75	Tilburg, Netherlands	July 1, 2022	101.2
Green Buildings	Two Green Globes (Achieved)	Completed expansion of a building at 2095 Logistics Drive	Mississauga, Ontario, Canada	August 2022	11.5
Green Buildings	Two Green Globes (Achieved)	Completed development of a Green Building at 2120 Logistics Way	Murfreesboro, Tennessee, USA	December 2022	93.7
Green Buildings	Two Green Globes (Achieved)	Completed development of three Green Buildings at 13220/13230/13250 Crosby Freeway	Houston, Texas, USA	January 31, 2023 and March 31, 2023	147.4
Green Buildings	Two Green Globes (Achieved)	Completed development of two Green Buildings at 10144/10207 Veterans Drive	Avon, Indiana, USA	March 31, 2023	108.7
Green Buildings	Two Green Globes (Achieved)	Completed development of a Green Building at 905 Belle Lane	Bolingbrook, IL, USA	April 1, 2023	31.3 (Partial Allocation)
Total Net Proc	eeds Allocated	-	1	1 	\$497.3
Portion of Net	Proceeds Allocat	ted			100%

⁵ See "Certification Rating Organizations" section for additional information on green building certifications.

Use of Net Proceeds of the 2029 Debentures

Eligible Green Project Category per Framework	Certification Rating ⁶ (Achieved or Pursuing)	Eligible Investment	Location	Date Completed /Estimated Completion Date	Allocated Net Proceeds (C\$ million)
Green Buildings	Two Green Globes (Achieved)	Completed development of a Green Building at 905 Belle Lane	Bolingbrook, IL, USA	April 1, 2023	22.1 (Partial Allocation)
Green Buildings	Two Green Globes (Achieved)	Completed development of three Green Buildings at 100/120/150 Business Park Drive	Lebanon, Tennessee, USA	April 1, 2023	72.9
Resource Efficiency and Management	N/A	LED lighting retrofits at five properties	Various, USA, Germany	May 2023 to December 2024	1.4
Green Buildings	Two Green Globes (Achieved)	Completed Development of a Green Building at 4 Bowery Road	Brantford, Ontario, Canada	January 31, 2024	78.5
Green Buildings	Two Green Globes (Achieved)	Completed expansion of a building at 555 Beck Crescent	Ajax, Ontario, Canada	August 1, 2024	16.4
Total Net Proceeds Allocated					\$191.3
Unallocated Net Proceeds					206.2
Total Net Proce	eds of Green Bo	ond			\$397.5
Portion of Net F	Proceeds Allocat	ted			48.1%

⁶ See "Certification Rating Organizations" section for additional information on green building certifications.

Certification Rating Organizations

LEED – Leadership in Energy Environmental Design ("LEED") is a voluntary, third-party building certification process developed by the U.S. Green Building Council ("USGBC"), a non-profit organization. The USGBC developed the LEED certification process to (i) evaluate the environmental performance from a whole-building perspective over a building's life cycle, (ii) provide a definitive standard for what constitutes a "green building," (iii) enhance environmental awareness among architects and building contractors, and (iv) encourage the design and construction of energy-efficient, water-conserving buildings that use sustainable or green resources and materials. Please see www.usgbc.org for more information.

BREEAM – Building Research Establishment Environmental Assessment Method ("BREEAM") is a global assessment method for masterplanning projects, infrastructure and buildings. BREEAM provides third party certification of the assessment of an asset's environmental, social and economic sustainability performance, using standards developed by BRE, a division of the BRE Group, headquartered in the United Kingdom.

Green Globes – Green Globes is a U.S. based recognized green rating assessment, guidance and certification program developed by the Green Building Initiative ("GBI"), a non-profit organization and American National Standards Institute Accredited Standards Developer dedicated to improving building performance and reducing climate impacts.

DGNB – refers to the certification system developed by the German Sustainable Building Council that is based on the three central sustainability areas of ecology, economy and sociocultural issues.

Project Evaluation and Selection

Granite has appointed a Green Bond Working Committee (the "Committee") consisting of members from its real estate, sustainability, legal and finance functions. The Committee identifies projects that satisfy the Eligible Green Projects criteria set forth in the Framework. All identified Eligible Investments included in this report have been approved by Granite's executive management.

External Review

This report has been reviewed by Morningstar Sustainalytics, on whether:

- 1. The Eligible Investments meet the criteria for Eligible Green Projects outlined in the Framework
- 2. The estimated environmental impact of each Eligible Investment meets the recommendations of the Harmonized Framework for Impact Reporting, as issued by the International Capital Markets Association, December 20, 2020.

Morningstar Sustainalytics' limited assurance report can be found in Appendix A, appended to this report.

GREEN BUILDINGS

CANADA

555, BECK CRESCENT (EXPANSION), AJAX, ONTARIO 4 BOWERY ROAD, BRANTFORD, ONTARIO 2095 LOGISTICS DRIVE (EXPANSION), MISSISSAUGA, ONTARIO

GERMANY

IM GHAI 36, 73776, POSTFACH 10 04 27, ALTBACH/ ESSLINGEN, BADEN-WÜRTTEMBERG

NETHERLANDS

FRANCIS BACONSTRAAT 4, EDE, GELDERLAND OUDE GRAF 15, WEERT, LIMBURG DE KROONSTRAAT 1 AND DE POOSTHOORNSTRAAT 2, TILBURG, NORTH BRABANT SWAARDVENSTRAAT 75, TILBURG, NORTH BRABANT AQUAMARIJNWEG 2, BLEISWIJK, SOUTH HOLLAND

<u>USA</u>

1243 GREGORY DRIVE, ANTIOCH, ILLINOIS 905 BELLE LANE, BOLINGBROOK, ILLINOIS 10144 VETERANS DRIVE, AVON, INDIANA 10207 VETERANS DRIVE, AVON, INDIANA 1201 ALLPOINTS COURT, PLAINFIELD, INDIANA 100 BUSINESS PARK DRIVE, LEBANON, TENNESSEE 120 BUSINESS PARK DRIVE, LEBANON, TENNESSEE 150 BUSINESS PARK DRIVE, LEBANON, TENNESSEE 2120 LOGISTICS WAY, MURFREESBORO, TENNESSEE 5000 VILLAGE CREEK ROAD, FORT WORTH, TEXAS 13220 CROSBY FREEWAY, HOUSTON, TEXAS 13250 CROSBY FREEWAY, HOUSTON, TEXAS 3501 NORTH LANCASTER HUTCHINS ROAD, LANCASTER, TEXAS

CANADA: 555 BECK CRESCENT (EXPANSION), AJAX, ONTARIO

120.35 kWh/m ²	Annual energy intensity		
38%	Annual energy use reduction ¹	31.9% or 37 tonnes CO ₂ eq	Annual greenhouse gas emissions avoided ²
17.08 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	4,626.01 m ²	Building area certified as Two Green Globes

- 1. The site had an Energy Star Design Score of 87, which translates to 76 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 38% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

CANADA: 4 BOWERY ROAD, BRANTFORD, ONTARIO

88.04 kWh/m ²	Annual energy intensity		
46%	Annual energy use reduction ¹	44.6% or 333 tonnes CO ₂ eq	Annual greenhouse gas emissions avoided ²
10.87 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	38,076.67 m ²	Building area certified as Two Green Globes

- 1. The site had an Energy Star Design Score of 93, which translates to 92 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 46% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

CANADA: 2095 LOGISTICS DRIVE (EXPANSION), MISSISSAUGA, ONTARIO

231.55 kWh/m ²	Annual energy intensity		
26%	Annual energy use reduction ¹	100%	Annual water use reduction ³
$6.95 \text{ kg CO}_2 \text{ eq/m}^2$	Annual greenhouse gas emission intensity	90%	Proportion of construction waste diverted from landfill ⁴
21.8% or 11.3 tonnes CO ₂ eq	Annual greenhouse gas emissions avoided ²	5,810 m ²	Building area certified as Two Green Globes

- 1. The site had an Energy Star Design Score of 76, which translates to 52 points in Green Globes scoring for item 3.3.1.1.1.1, which is equivalent to a 26% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property
- 3. Compared to baseline (no water fixtures installed in expansion)
- 4. Estimated value

GERMANY: IM GHAI 36, 73776, POSTFACH 10 04 27, ALTBACH/ ESSLINGEN/, BADEN-WÜRTTEMBERG

80 kWh/m ²	Annual energy intensity		
23.8%	Annual energy use reduction ¹	92%	Proportion of construction waste diverted from landfill ²
23 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	27,188 m ²	Building area certified as DGNB Gold
	DGN	IB	

- 1. Calculated according to DGNB Annex 2 Number 2 EnEV
- 2. Refers to proportion of building materials that were recycled from demolition phase

NETHERLANDS: FRANCIS BACONSTRAAT 4, EDE, GELDERLAND

31.5 kWh/m ²	Annual energy intensity		
11.5%	Annual energy use reduction ¹	24.8%	Annual water use reduction ¹
14.81 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	91%	Proportion of construction waste diverted from landfill ⁴
12.6%	Proportion of on-site renewable energy ²	11,479 m ²	Building area certified as BREEAM Very Good

- 1. In comparison with local baseline
- 2. Proportion of energy usage that is generated through rooftop solar PV array
- 3. Based on total amount of construction waste generated that was minimized, reused, or recycled

NETHERLANDS: OUDE GRAF 15, WEERT, LIMBURG

29.7 kWh/m ²	Annual energy intensity		
100%	Annual energy use reduction ¹	73.6%	Proportion of on-site renewable energy ²
-0.9 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	93%	Proportion of construction waste diverted from landfill ⁴
100%	Annual greenhouse gas emissions avoided ¹	22,126 m ²	Building area certified as BREEAM Excellent

- 1. Based on building related energy, in comparison with local baseline
- 2. Proportion of base building energy usage that is generated through rooftop solar PV array
- 3. Based on total amount of construction waste generated that was minimized, reused, or recycled

NETHERLANDS: DE KROONSTRAAT 1 AND DE POOSTHOORNSTRAAT 2, TILBURG, NORTH BRABANT

34.0 kWh/m ²	Annual energy intensity ¹	73.8%	Proportion of on-site renewable energy ^{1,3}
100%	Annual energy use reduction ^{1,2}	39.9%	Annual water use reduction ^{1,2}
-0.95 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity ¹	89%	Proportion of construction waste diverted from landfill ^{1,4}
100%	Annual greenhouse gas emissions avoided ^{1,2}	45,242 m ²	Building area certified as BREEAM Excellent ¹

- 1. Based on combined data for Phase 1 and Phase 2 of constructed building
- 2. In comparison with local baseline
- 3. Proportion of energy usage that is generated through rooftop solar PV array
- 4. Based on total amount of construction waste generated that was minimized, reused, or recycled

NETHERLANDS: SWAARDVENSTRAAT 75, TILBURG, NORTH BRABANT

-62.66 kWh/m ²	Annual energy intensity	152.8%	Proportion of on-site renewable energy ²
231.4%	Annual energy use reduction ¹	59.5%	Annual water use reduction ¹
-29.7 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	81.2%	Proportion of construction waste diverted from landfill ³
42.04 tonnes CO ₂ eq	Annual greenhouse gas emissions avoided ¹	46,083 m ²	Building area certified as BREEAM Excellent

- 1. In comparison with local baseline
- 2. Proportion of base building energy usage that is generated through rooftop solar PV array
- 3. Based on total amount of construction waste generated that was minimized, reused, or recycled

NETHERLANDS: AQUAMARIJNWEG 2, BLEISWIJK, SOUTH HOLLAND

81.11 kWh/m ²	Annual energy intensity ¹	5.9%	Proportion of on-site renewable energy ³
20%	Annual energy use reduction ²	50%	Annual water use reduction ^{4,5}
17.91 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity ¹	91.3%	Proportion of construction waste diverted from landfill ⁶
62.7%	Reduction in environmental impacts from building materials ⁷	22,319 m ²	Building area certified as BREEAM Very Good

- 1. Based on office and meeting areas of building (2,324.7 m²)
- 2. In comparison with local building code
- 3. Proportion of base building electricity usage that is generated through rooftop solar PV array
- 4. Design water consumption from flush and flow fixtures, excluding process water and irrigation
- 5. In comparison with baseline
- 6. Based on total amount of construction waste generated that was minimized, reused, or recycled
- Environmental impacts over the entire lifecycle of all materials used in the construction of the building were calculated using a national environmental database and expressed as shadow costs. The materials used in the construction of this building had "shadow costs" of 0.28 €/m², compared to a reference value for a standard building of 0.75 €/m²

USA: 1243 GREGORY DRIVE, ANTIOCH, ILLINOIS

SUSTAINABILITY INDICATORS

57.2 kWh/m ²	Annual energy intensity		
28.2%	Annual energy use reduction ¹	30.4%	Annual water use reduction ^{2,3}
11.61 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	84.1%	Proportion of construction waste diverted from landfill ⁴
192.05 tonnes CO ₂ eq	Annual greenhouse gas emissions avoided ²	42,204 m ²	Building area certified as LEED Silver

SILVER

- 1. Calculated vs. baseline using ASHRAE 90.1 methodology
- 2. Compared to baseline
- 3. Design water consumption from flush and flow fixtures, excluding process water and irrigation
- 4. Based on total amount of construction waste generated that was minimized, reused, or recycled

USA: 905 BELLE LANE, BOLINGBROOK, ILLINOIS

10.17 kWh/m ²	Annual energy intensity	32.1%	Annual water use reduction ³
50%	Annual energy use reduction ¹	83% or 333 tonnes CO ₂ eq	Annual greenhouse gas emissions avoided ²
$3.32 \text{ kg CO}_2 \text{ eq/m}^2$	Annual greenhouse gas emission intensity	20,496.26 m ²	Building area certified as Two Green Globes

- 1. The site had an Energy Star Design Score of 100, which translates to 100 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 50% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property
- 3. Versus baseline

USA: 10144 VETERANS DRIVE, AVON, INDIANA

38.32 kWh/m ²	Annual energy intensity			
50%	Annual energy use reduction ¹	64% or 1047 tonnes CO_2 eq	Annual greenhouse gas emissions avoided ²	
8.88 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	66,221 m ²	Building area certified as Two Green Globes	

- 1. The site had an Energy Star Design Score of 100, which translates to 100 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 50% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

USA: 10207 VETERANS DRIVE, AVON, INDIANA

39.14 kWh/m ²	Annual energy intensity			
50%	Annual energy use reduction ¹	65.5% or 438 tonnes CO ₂ eq	Annual greenhouse gas emissions avoided ²	
8.54 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	27,035 m ²	Building area certified as Two Green Globes	

- 1. The site had an Energy Star Design Score of 100, which translates to 100 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 50% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

USA: 1201 ALLPOINTS COURT, PLAINFIELD, INDIANA

SUSTAINABILITY INDICATORS

69.5 kWh/m ²	Annual energy intensity	26.9%	Annual water use reduction ^{2,3}
34%	Annual energy use reduction ¹	853 tonnes CO ₂ eq or 5 4%	Annual greenhouse gas emissions avoided ²
15.4 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	47,470 m ²	Building area certified as Two Green Globes

1. The site had an Energy Star Design Score of 84, which translates to 68 points in Green Globes scoring for item 3.3.1.1.1.1, which is equivalent to a 34% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring

- 2. Compared to baseline
- 3. Design water consumption from flush and flow fixtures, excluding process water and irrigation
- 4. Data was not available to report on this indicator

USA: 100 BUSINESS PARK DRIVE, LEBANON, TENNESSEE

13.9 kWh/m ²	Annual energy intensity				
50%	Annual energy use reduction ¹	81.6% or 283 tonnes CO ₂ eq	Annual greenhouse gas emissions avoided ²		
4.07 kg CO_2 eq/m ²	Annual greenhouse gas emission intensity	15,724 m ²	Building area certified as Two Green Globes		

- 1. The site had an Energy Star Design Score of 96, which translates to 100 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 50% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

USA: 120 BUSINESS PARK DRIVE, LEBANON, TENNESSEE

13.44 kWh/m²	Annual energy intensity		
50%	Annual energy use	82% or 291	Annual greenhouse gas
	reduction ¹	tonnes CO ₂ eq	emissions avoided ²
3.93 kg CO_2 eq/m ²	Annual greenhouse gas	16,258 m ²	Building area certified as Two
	emission intensity		Green Globes
		and the second	
		Contractory of	-
Charles and the second second			
San Harris	The state of the s	HILL CAR AND	the second second second
A BOARD		A CONTRACTOR OF THE OWNER	A day to a set of the set of the set of the
			the second of the second secon
	the second		
	1.		
	1		
			- And
E		in in	the states of
		A H	
			A CALLER AND
			St. APPROX
ATTEN A		130	

- 1. The site had an Energy Star Design Score of 96, which translates to 100 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 50% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

USA: 150 BUSINESS PARK DRIVE, LEBANON, TENNESSEE

4.31 kWh/m²	Annual energy intensity		
50%	Annual energy use	93.7% or 314	Annual greenhouse gas
	reduction ¹	tonnes CO ₂ eq	emissions avoided ²
1.37 kg CO ₂ eq/m ²	Annual greenhouse gas	15,329 m ²	Building area certified as Two
	emission intensity		Green Globes
X			
1 1	3		
			See State And

- 1. The site had an Energy Star Design Score of 96, which translates to 100 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 50% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

USA: 2120 LOGISTICS WAY, MURFREESBORO, TENNESSEE

17.35 kWh/m ²	Annual energy intensity		
50%	Annual energy use reduction ¹	75.8% or 1304 tonnes CO₂ eq	Annual greenhouse gas emissions avoided ²
5.32 kg CO_2 eq/m ²	Annual greenhouse gas emission intensity	78,455 m ²	Building area certified as Two Green Globes

- 1. The site had an Energy Star Design Score of 100, which translates to 100 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 50% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

USA: 5000 VILLAGE CREEK ROAD, FORT WORTH, TEXAS

50.07 kWh/m ²	Annual energy intensity		
38%	Annual energy use reduction ¹	24% or 209.4 tonnes CO ₂ eq	Annual greenhouse gas emissions avoided ²
11.69 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	56,247 m ²	Building area certified as Two Green Globes

- 1. The site had an Energy Star Design Score of 87, which translates to 76 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 38% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

USA: 13220 CROSBY FREEWAY, HOUSTON, TEXAS

15.21 kWh/m ²	Annual energy intensity		
50%	Annual energy use reduction ¹	68.7% or 342 tonnes CO ₂ eq	Annual greenhouse gas emissions avoided ²
5.68 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	27,466 m ²	Building area certified as Two Green Globes

- 1. The site had an Energy Star Design Score of 100, which translates to 100 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 50% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

USA: 13230 CROSBY FREEWAY, HOUSTON, TEXAS

15.17 kWh/m ²	Annual energy intensity						
50%	Annual energy use reduction ¹	69.4% or 443 tonnes CO ₂ eq	Annual greenhouse gas emissions avoided ²				
5.63 kg CO_2 eq/m ²	Annual greenhouse gas emission intensity	34,664 m ²	Building area certified as Two Green Globes				

- 1. The site had an Energy Star Design Score of 98, which translates to 100 points in Green Globes scoring for item 3.3.1.1.1, which is equivalent to a 50% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

USA: 13250 CROSBY FREEWAY, HOUSTON, TEXAS

27.74 kWh/m ²	Annual energy intensity					
38%	Annual energy use reduction ¹	43% or 499 tonnes CO_2 eq	Annual greenhouse gas emissions avoided ²			
10.34 kg CO ₂ eq/m ²	Annual greenhouse gas emission intensity	63,908 m ²	Building area certified as Two Green Globes			

- 1. The site had an Energy Star Design Score of 87, which translates to 76 points in Green Globes scoring for item 3.3.1.1.1.1, which is equivalent to a 38% energy reduction vs. baseline using ASHRAE 90.1, per Green Globes scoring
- 2. Compared to Median property

USA: 3501 NORTH LANCASTER HUTCHINS ROAD, LANCASTER, TEXAS

SUSTAINABILTY INDICATORS

144.6 kWh/m ²	Annual energy intensity		
39.7 %	Annual energy use reduction ¹	50.7%	Annual water use reduction ^{2,3}
56 kg CO_2 eq/m ²	Annual greenhouse gas emission intensity	82.3%	Proportion of construction waste diverted from landfill ⁴
678 tonnes CO ₂ eq or 39.9%	Annual greenhouse gas emissions avoided ²	18,243 m ²	Building area certified as LEED Silver

SILVER

- 1. Calculated vs. baseline using ASHRAE 90.1 methodology
- 2. Compared to baseline
- 3. Design water consumption from flush and flow fixtures, excluding process water and irrigation
- 4. Based on total amount of construction waste generated that was minimized, reused, or recycled

RESOURCE EFFICIENCY AND MANAGEMENT PROJECTS

SUSTAINABILITY INDICATORS

		Annual Energy	Annual
Property Address	Project Description	Savings ¹	reduction of
			greenhouse gas
			emissions ²
Canada: 600 Tesma Way, Concord,	LED lighting	312.04 MWh	9.4 tonnes CO ₂
Ontario	upgrades ³	or 57%	eq
Germany: Peiner Strabe 151-155,	LED lighting upgrade	239 MWh or	78.68 tonnes
Saltzgitter, Niedersachsen		86%	CO ₂ eq
USA: 101 Clyde Alexander Lane,	LED lighting upgrade	427.98 MWh	210 tonnes CO ₂
Pooler, Georgia		or 53%	eq
USA: 1695 Crossroads Drive, Joliet,	HVAC replacement ⁴	8.31 MWh or	2.61 tonnes CO ₂
Illinois		33.2%	eq
USA: 445 Airtech Parkway,	LED lighting upgrade	599.87 MWh	519.7 tonnes
Plainfield, Indiana		or 43%	CO ₂ eq
USA: 972 Conestoga Parkway,	LED lighting upgrade	826 MWh or	767.4 tonnes
Shepherdsville, Kentucky		75%	CO ₂ eq
USA: 39600 Lewis Drive, Novi,	LED lighting upgrade	66.54 MWh	41.6 tonnes CO ₂
Michigan	of exterior lights	or 65%	eq
USA: 39600 Lewis Drive, Novi,	Boiler replacement	3,868 GJ or	194.6 tonnes
Michigan		33.4%	CO ₂ eq
USA: 330 East Stateline Road,	LED lighting upgrade	437 MWh or	205 tonnes CO ₂
Southaven, Mississippi		46%	eq
USA: 6201 Green Pointe	LED lighting	380.53 MWh	252.2 tonnes
Drive South,	upgrades ³	or 34.4%	CO ₂ eq
Groveport, Ohio			
USA: 535 Gateway Blvd., Monroe,	LED lighting	1,345.59 MWh	926 tonnes CO ₂
Ohio	upgrades ³	or 55%	eq
USA: 201 Sunridge Blvd, Wilmer,	LED lighting upgrade	2,401.15 MWh	1,306 tonnes
Техаз		or 73%	CO ₂ eq

1. Based on assumed number of hours of usage and compared against energy usage from previously existing system.

2. Carbon intensity for electricity supply obtained from following sources:

- a. Michigan electricity profile 2019 (<u>https://eia.gov/electricity/state/Michigan</u>)
- b. Ohio electricity profile 2019, 2020 & 2022 (<u>https://eia.gov/electricity/state/Ohio</u>)
- c. Georgia electricity profile 2019 (<u>https://eia.gov/electricity/state/Georgia</u>)
- d. Texas electricity profile 2019 (<u>https://eia.gov/electricity/state/Texas</u>)
- e. Ontario Power Generation Climate Change 2020 Report (https://www.opg.com/documents/opg-climate-change-plan-2020/)
- f. Illinois Electricity Profile 2021 (<u>https://www.eia.gov/electricity/state/Illinois/</u>)
- g. Indiana Electricity Profile 2022 (<u>https://www.eia.gov/electricity/state/indiana/</u>)
- h. Mississippi electricity profile 2022 (<u>https://www.eia.gov/electricity/state/mississippi/</u>)
- i. Kentucky electricity profile 2022 (https://www.eia.gov/electricity/state/kentucky/)

j. Germany Climate Transparency Report 2022 (<u>https://www.climate-transparency.org/wp-content/uploads/2022/10/CT2022-</u> <u>Germany-Web.pdf</u>)

3. Combined data for the two LED lighting retrofits completed at this property

4. Combined data for the replacement of three rooftop units

APPENDIX A

Granite REIT

Type of Engagement: Annual Review Date:10 February 2025 Engagement Team: Tomya Sardana, tomya.sardana@morningstar.com Bhakti Chikhalikar, bhakti.chikhalikar@morningstar.com

Introduction

Granite REIT Holdings Limited Partnership, with an unconditional guarantee by Granite Real Estate Investment Trust and Granite REIT Inc. (collectively "Granite") issued three bonds between June 2020 and October 2023, namely, the "2027 Debentures", the "2028 Debentures" and the "2029 Debentures" (collectively, the "Green Bonds").¹ Granite's Green Bonds raised a total of CAD 1.4 billion to finance and refinance projects related to green buildings, and resource efficiency and management. In February 2025, Granite engaged Sustainalytics to review the projects financed with proceeds from the Green Bonds (the "Nominated Expenditures") and provide an assessment as to whether they meet the use of proceeds criteria and whether Granite complied with the reporting commitments in the Green Bond Framework (the "Framework").² Sustainalytics provided a Second-Party Opinion on the Framework in April 2020.³ This is Sustainalytics' fifth annual review of allocation and reporting of the instruments issued under the Framework, following previous reviews in February 2021, February 2022, February 2023 and February 2024.^{4,5,6}

Evaluation Criteria

Sustainalytics evaluated the Nominated Expenditures and Granite's reporting based on whether they:

- 1. Meet the use of proceeds and eligibility criteria defined in the Framework; and
- 2. Reported on at least one key performance indicator (KPI) for each use of proceeds category defined in the Framework.

Table 1: Use of F	Proceeds Categories, Eligibility Criteria and Associa	ted KPIs
lleo of		

Use of Proceeds Category	Eligibility Criteria	Key Performance Indicators
Green Buildings	Investments related to the purchase, development, redevelopment or improvement of logistics, e-commerce, warehouse and industrial properties that have received or are expected to receive at least one of the following green building certifications (or other equivalent green certification):	Level of green building certifications
	- LEED: Silver, Gold, Platinum	
	- DGNB: Silver, Gold, Platinum	
	 BREEAM: Very Good, Excellent, Outstanding 	

¹ The Green Bonds include: i) Series 4 Senior Debentures due 2027 (the "2027 Debentures"), issued in June 2020 and raised CAD 500 million; Series 6 Senior Debentures due 2028 (the, "2028 Debentures"), issued in August 2021 and raised CAD 500 million; Series 7 Senior Debentures due 2029 (the, "2029 Debentures"), issued in October 2023 and raised CAD 400 million.

² Granite REIT, "Green Bond Framework", (2020), at: <u>https://granitereit.com/sustainability</u>

³ Sustainalytics, "Second-Party Opinion, Granite REIT Green Bond Framework", (2020), at: <u>https://mstar-sustops-cdn-mainwebsite-</u>

s3.s3.amazonaws.com/docs/default-source/spos/granite-reit-green-bond-framework-second-party-opinion.pdf

⁴ Sustainalytics, "Annual Review, Granite", (2021), at: <u>https://mstar-sustops-cdn-mainwebsite-s3.s3.amazonaws.com/docs/default-source/spos/granite-reit-green-bond-framework-annual-review.pdf</u>

⁵ Sustainalytics, "Annual Review, Granite", (2022), at: <u>https://mstar-sustops-cdn-mainwebsite-s3.s3.amazonaws.com/docs/default-source/spos/granite-reit-green-bond-annual-review-2022.pdf</u>

⁶ Sustainalytics, "Annual Review, Granite", (2024), at: <u>https://mstar-sustops-cdn-mainwebsite-s3.s3.amazonaws.com/docs/default-source/spos/granite-reit-annual-review-2024.pdf</u>

	- Green Globes: Two, Three, Four	
	Buildings with LEED Silver, DGNB Silver or Two Green Globes certifications will also be confirmed to have been designed to achieve a 20 to 30% energy efficiency improvement.	
Resource	Investments that improve energy or water efficiency greater than 15%, or make other environmentally beneficial improvements to properties or land including, but not limited to, investments in:	
	- LED and other energy efficient lighting	 Annual energy saved or
	 Cool roof and other sustainability- oriented construction materials 	renewable energy generated
Efficiency & Management	- Smart meters	• Annual greenhouse gas
management	- Energy storage	emissions reduced/avoided
	 Xeriscaping/drought-tolerant landscaping 	
	- Sustainable drainage systems	
	 Water and energy-saving technologies and materials 	

Issuer's Responsibility

Granite is responsible for providing accurate information and documentation relating to the details of the projects, including descriptions, amounts allocated and impact.

Independence and Quality Control

Sustainalytics, a leading provider of ESG research and ratings, conducted the verification of the use of proceeds from Granite's Green Bonds. The work undertaken as part of this engagement included collection of documentation from Granite and review of said documentation to assess conformance with the Framework.

Sustainalytics relied on the information and the facts presented by Granite. Sustainalytics is not responsible nor shall it be held liable for any inaccuracies in the opinions, findings or conclusions herein due to incorrect or incomplete data provided by Granite.

Sustainalytics made all efforts to ensure the highest quality and rigor during its assessment process and enlisted its Sustainability Bonds Review Committee to provide oversight of the review.

Conclusion

Based on the limited assurance procedures conducted,⁷ nothing has come to Sustainalytics' attention that causes us to believe that, in all material respects, the Nominated Expenditures do not conform with the use of proceeds criteria and reporting commitments in the Framework. Granite has disclosed to Sustainalytics that 100% of the proceeds from the 2027 Debentures and 2028 Debentures and 48.1% of the proceeds from the 2029 Debentures were fully allocated as of December 2024. Granite intends to allocate the remaining proceeds from the 2029 Debentures up to December 2026.

⁷ Sustainalytics' limited assurance process includes reviewing documentation relating to details of projects, as provided by the issuing entity, which is responsible for providing accurate information. These may include descriptions of projects, estimated and realized costs, and reported impact. Sustainalytics has not conducted on-site visits to projects.

Detailed Findings

Table 2: Detailed Findings

Framework Requirements	Procedure Performed	Factual Findings	Error or Exceptions Identified
Use of Proceeds Criteria	Verification of the Nominated Expenditures to determine alignment with the use of proceeds criteria outlined in the Framework.	The Nominated Expenditures comply with the use of proceeds criteria.	None
Reporting Criteria	Verification of the Nominated Expenditures to determine if impact was reported in line with the KPIs outlined in the Framework.	Granite reported on at least one KPI per use of proceeds category.	None

Appendices

Appendix 1: Allocation Reporting

Table 3: Allocation of proceeds from the 2027 Debentures

Use of Proceeds Category	Projects Financed	Location	Amount Allocated (CAD million)
	Acquisition of a green building located at 3501 North Lancaster Hutchins Road.	Lancaster, Texas, US	106.1
	Acquisition of a green building located at Oude Graaf 15.	Weert, Netherlands	31.9
	Completed development of a green building at 1201 Allpoints Court.	Plainfield, Indiana, US	36.0
	Acquisition of a green building located at Francis Baconstraat 4.	Ede, Netherlands	21.4
Green Buildings	Acquisition and subsequent expansion of a green building located at De Kroonstraat 1 and De Poosthoornstraat 2 (expansion).	Tilburg, Netherlands	83.8
	Acquisition and subsequent development of a green building located at Aquamarijnweg 2.	Bleiswijk, Netherlands	66.2
	Acquisition of a green building located at 1243 Gregory Drive	Antioch, Illinois, US	56.5
	Completed development of a green building at Im Ghai 36	Altbach, Germany	41.2
	Completed development of a green building at 5000 Village Creek Road	Fort Worth, Texas, US	51.6 ⁸
Resource Efficiency and Management	LED lighting retrofits at six properties	Various properties in Canada and US	1.8
Management	HVAC replacements at two properties	Joliet, IL, US and Novi, MI, US	0.4
Total Allocated Am	496.9		
Total Unallocated A	Amount (CAD million)		0.0
Gross Proceeds Ra	500.0 ⁹		

⁸ Sustainalytics notes that the allocation for the green building in Fort Worth, Texas has been financed using CAD 51.6 million from the 2027 Debentures and CAD 3.5 million from the 2028 Debentures.

⁹ Sustainalytics notes that CAD 3.1 million were incurred as transactional costs.

Use of Proceeds Category	Projects Financed	Location	Amount Allocated (CAD million)
Green Buildings	Completed development of a green building at 5000 Village Creek Road	Fort Worth, Texas, US	3.5
	Acquisition of a green building located at Swaardvenstraat 75	Tilburg, Netherlands	101.2
	Completed expansion of a building at 2095 Logistics Drive	Mississauga, Ontario, Canada	11.5
	Completed development of a green building at 2120 Logistics Way	Murfreesboro, Tennessee, US	93.7
	Completed development of three green buildings at 13220/13230/13250 Crosby Freeway	Houston, Texas, US	147.4
	Completed development of two green buildings at 10144/10207 Veterans Drive	Avon, Indiana, US	108.7
	Completed development of a green building at 905 Belle Lane	Bolingbrook, Illinois, US	31.3 ¹⁰
Total Alloca	ted Amount	1	497.3
Total Unallo	cated Amount		0.0
Gross Proce	eeds Raised		500.0 ¹¹

Table 4: Allocation of proceeds from the 2028 Debentures

Table 5: Allocation of proceeds from the 2029 Debentures

Use of Proceeds Category	Projects Financed	Amount Allocated (CAD million)	
Green Buildings	Completed development of a green building at 905 Belle Lane	Bolingbrook, Illinois, US	22.1
	Completed development of three green buildings at 100/120/150 Business Park Drive	Lebanon, Tennessee, US	72.9
	Completed development of a green building at 4 Bowery Road	Brantford, Ontario, Canada	78.5
	Completed expansion of a building at 555 Beck Crescent	Ajax, Ontario, Canada	16.4
Resource Efficiency and Management	and entLED lighting retrofits at five propertiesVarious properties in the US and Germany		
Total Allocated	191.3		
Total Unallocate	206.2		
Gross Proceeds	Raised		400.0 ¹²

¹⁰ Sustainalytics notes that the allocation for the green building in Bolingbrook, Illinois has been financed using CAD 31.3 million from the 2028 Debentures and CAD 22.1 million from the 2029 Debentures.

 ¹¹ Sustainalytics notes that CAD 2.7 million were incurred as transactional costs.
 ¹² Sustainalytics notes that CAD 2.5 million were incurred as transactional costs.

Appendix 2: Reported Impact

Table 6: Reported Impact from Green Building Projects

Location	Certification	Building area	Annual energy	Annual energy	Annual greenhouse gas emissions avoided ^{13,14}		Annual greenhouse gas	Proportion of on-site	Proportion of construction waste diverted	Annual water use
	rating	certified (m ²)	intensity (kWh/m²)	reduction (%)	(tCO ₂ e)	(%)	emissions intensity (kgCO ₂ e/m ²)	renewable energy ¹⁵ (%)	from landfill ¹⁶ (%)	reduction ¹⁷ (%)
Ajax, Ontario, Canada	Two Green Globes	4,626.01	120.35	38%	37	31.9%	17.08	-	-	-
Brantford, Ontario, Canada	Two Green Globes	38,076.67	88.04	46%	333	44.6%	10.87	-	-	-
Mississauga, Ontario, Canada	Two Green Globes	5,810	231.55	26%	11.3	21.8%	6.95	-	90%	100%
Altbach, Germany	DGNB Gold	27,188	80	23.8%	-	-	23	-	92%	-
Ede, Netherlands	BREEAM Very Good	11,479	31.5	11.5%	-	-	14.81	12.6%	91%	24.8%
Weert, Netherlands	BREEAM Excellent	22,126	29.7	100%	-	100%	-0.9	73.6%	93%	-
De Kroonstraat 1 and De Poosthoornstraat 2, Tilburg, Netherlands	BREEAM Excellent	45,242	34	100%	-	100%	-0.95	73.8%	89%	39.9%
Swaardvenstraat 75, Tilburg, Netherlands	BREEAM Excellent	46,083	-62.66	231.4%	42.04	-	-29.7	152.8%	81.2%	59.5%
Bleiswijk, Netherlands	BREEAM Very Good	22,319	81.11	20%	-	-	17.91	5.9%	91.3%	50%
Antioch, Illinois, US	LEED Silver	42,204	57.2	28.2%	192.05	-	11.61	-	84.1%	30.4%
Bolingbrook, Illinois, US	Two Green Globes	20,496.26	10.17	50%	333	83%	3.32	-	-	32.1%
10144 Veterans Drive, Avon, Indiana, US	Two Green Globes	66,221	38.32	50%	1,047	64%	8.88	-	-	-

¹³ In comparison with a local baseline.

¹⁴ Compared to median property.

¹⁵ Proportion of base building electricity usage that is generated through rooftop solar PV array.

¹⁶ Based on the total amount of construction waste generated that was minimized, reused or recycled.

¹⁷ Design water consumption from flush and flow fixtures, excluding process water and irrigation.

10207 Veterans Drive, Avon, Indiana, US	Two Green Globes	27,035	39.14	50%	438	65.5%	8.54	-	-	-
Plainfield, Indiana, US	Two Green Globes	47,470	69.50	34%	853	54%	15.40	-	-	26.9%
100 Business Park Drive, Lebanon, Tennessee, US	Two Green Globes	15,724	13.90	50%	283	81.6%	4.07	-	-	-
120 Business Park Drive, Lebanon, Tennessee, US	Two Green Globes	16,258	13.44	50%	291	82%	3.93	-	-	-
150 Business Park Drive, Lebanon, Tennessee, US	Two Green Globes	15,329	4.31	50%	314	93.7%	1.37	-	-	-
Murfreesboro, Tennessee, US	Two Green Globes	78,455	17.35	50%	1,304	75.8%	5.32	-	-	-
Fort Worth, Texas, US	Two Green Globes	56,247	50.07	38%	209.4	24%	11.69	-	-	-
13220 Crosby Freeway, Houston, Texas, US	Two Green Globes	27,466	15.21	50%	342	68.7%	5.68	-	-	-
13230 Crosby Freeway, Houston, Texas, US	Two Green Globes	34,664	15.17	50%	443	69.4%	5.63	-	-	-
13250 Crosby Freeway, Houston, Texas, US	Two Green Globes	63,908	27.74	38%	499	43%	10.34	-	-	-
Lancaster, Texas, US	LEED Silver	18,243	144.60	39.7%	678	39.9%	56.00	-	82.3%	50.7%

Property Location	Annual Energy Savings (MWh)	Annual reduction of greenhouse gas emissions ¹⁸ (tCO ₂ e)
Concord, Ontario, Canada	312.04	9.4
Saltzgitter, Niedersachsen, Germany	239	78.68
Pooler, Georgia, US	427.98	210
Joliet, Illinois, US	8.31	2.61
Plainfield, Indiana, US	599.87	519.7
Shepherdsville, Kentucky, US	826	767.4
Novi, Michigan, US	66.54	41.6
Novi, Michigan, US	1,074.44	194.6
Southaven, Mississippi, US	437	205
Groveport, Ohio, US	380.54	252.2
Monroe, Ohio, US	1,345.59	926
Wilmer, Texas, US	2,401.15	1,306

Table 7: Reported Impact from Resource Efficiency and Management Projects

¹⁸ Granite obtained the carbon intensity of the electricity supply from the following sources:

a. US Energy Information Administration, "State Electricity Profiles", at: <u>https://www.eia.gov/electricity/state/</u>

b. Ontario Power Generation, "Our Climate Change Plan", (2020), at: <u>https://www.opg.com/documents/opg-climate-change-plan-2020/</u>

c. Climate Transparency, "Germany Climate Transparency: Comparing G20 Climate Action", (2022), at: <u>https://www.climate-transparency.org/wp-content/uploads/2022/10/CT2022-Germany-Web.pdf</u>

Disclaimer

Copyright ©2025 Sustainalytics, a Morningstar company. All rights reserved.

The information, methodologies, data and opinions contained or reflected herein (the "Information") are proprietary to Sustainalytics and/or its third-party content providers and may be made available to third parties only in the form and format disclosed by Sustainalytics. The Information is not directed to, nor intended for distribution to or use by India-based clients and/or users, and the distribution of Information to India resident individuals and entities is not permitted.

The Information is provided for informational purposes only and (1) does not constitute an endorsement of any product, project, investment strategy or consideration of any particular environmental, social or governance related issues as part of any investment strategy; (2) does not constitute investment advice nor recommends any particular investment, nor represents an expert opinion or negative assurance letter; (3) is not part of any offering and does not constitute an offer or indication to buy or sell securities, to select a project nor enter into any kind of business transaction; (4) is not an assessment of the economic performance, financial obligations nor creditworthiness of any entity; (5) is not a substitute for professional advice; (6) has not been submitted to, nor received approval from, any relevant regulatory or governmental authority. Past performance is no guarantee of future results.

The Information is based on information made available by third parties, is subject to continuous change and no warranty is made as to its completeness, accuracy, currency, nor the fitness of the Information for a particular purpose. The Information is provided "as is" and reflects Sustainalytics' opinion solely at the date of its publication.

Neither Sustainalytics nor its third-party content providers accept any liability in connection with the use of the Information or for actions of third parties with respect to the Information, in any manner whatsoever, to the extent permitted by applicable law.

Any reference to third party content providers' names is solely to acknowledge their ownership of information, methodologies, data and opinions contained or reflected within the Information and does not constitute a sponsorship or endorsement of the Information by such third-party content provider. For more information regarding third-party content providers visit <u>http://www.sustainalytics.com/legal-disclaimers</u>

Sustainalytics may receive compensation for its ratings, opinions and other services, from, among others, issuers, insurers, guarantors and/or underwriters of debt securities, or investors, via different business units. Sustainalytics maintains measures designed to safeguard the objectivity and independence of its opinions. For more information visit <u>Governance Documents</u> or contact <u>compliance@sustainalytics.com</u>.

This deliverable, in particular the images, text and graphics contained therein, and the layout and company logo of Sustainalytics are protected under copyright and trademark law. Any use thereof shall require express prior written consent. Use shall be deemed to refer in particular to the copying or duplication of the opinion wholly or in part, the distribution of the opinion, either free of charge or against payment, or the exploitation of this opinion in any other conceivable manner.

The issuer is fully responsible for certifying and ensuring the compliance with its commitments, for their implementation and monitoring.

About Morningstar Sustainalytics

Morningstar Sustainalytics is a leading ESG research, ratings and data firm that supports investors around the world with the development and implementation of responsible investment strategies. For more than 30 years, the firm has been at the forefront of developing high-quality, innovative solutions to meet the evolving needs of global investors. Today, Sustainalytics works with hundreds of the world's leading asset managers and pension funds, which incorporate ESG and corporate governance information and assessments into their investment processes. Sustainalytics also works with hundreds of companies and their financial intermediaries to help them consider sustainability in policies, practices and capital projects. For more information, visit <u>www.sustainalytics.com</u>.

